Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nature ; 615(7952): 455-460, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36813967

RESUMO

Mantle viscosity plays a key role in the Earth's internal dynamics and thermal history. Geophysical inferences of the viscosity structure, however, have shown large variability depending on the types of observables used or the assumptions imposed1-3. Here, we study the mantle viscosity structure by using the postseismic deformation following a deep (approximately 560 km) earthquake located near the bottom of the upper mantle. We apply independent component analysis4 to geodetic time series to successfully detect and extract the postseismic deformation induced by the moment magnitude 8.2, 2018 Fiji earthquake. To search for the viscosity structure that can explain the detected signal, we perform forward viscoelastic relaxation modelling5,6 with a range of viscosity structures. We find that our observation requires a relatively thin (approximately 100 km), low-viscosity (1017 to 1018 Pa s) layer at the bottom of the mantle transition zone. Such a weak zone could explain the slab flattening7 and orphaning8 observed in numerous subduction zones, which are otherwise challenging to explain in the whole mantle convection regime. The low-viscosity layer may result from superplasticity9 induced by the postspinel transition, weak CaSiO3 perovskite10, high water content11 or dehydration melting12.

2.
PLoS One ; 17(11): e0276547, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331923

RESUMO

The processes that initiate and sustain sediment transport which contribute to the modification of aeolian deposits in Mars' low-density atmosphere are still not fully understood despite recent atmospheric modelling. However, detailed microscale wind flow modelling, using Computational Fluid Dynamics at a resolution of <2 m, provides insights into the near-surface processes that cannot be modeled using larger-scale atmospheric modeling. Such Computational Fluid Dynamics simulations cannot by themselves account for regional-scale atmospheric circulations or flow modifications induced by regional km-scale topography, although realistic fine-scale mesoscale atmospheric modeling can. Using the output parameters from mesoscale simulations to inform the input conditions for the Computational Fluid Dynamics microscale simulations provides a practical approach to simulate near-surface wind flow and its relationship to very small-scale topographic features on Mars, particularly in areas which lack in situ rover data. This paper sets out a series of integrated techniques to enable a multi-scale modelling approach for surface airflow to derive surface airflow dynamics at a (dune) landform scale using High Resolution Imaging Science Experiment derived topographic data. The work therefore provides a more informed and realistic Computational Fluid Dynamics microscale modelling method, which will provide more detailed insight into the surface wind forcing of aeolian transport patterns on martian surfaces such as dunes.


Assuntos
Marte , Vento , Meio Ambiente Extraterreno , Atmosfera , Simulação por Computador
3.
Nature ; 595(7865): 70-74, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194023

RESUMO

Geothermal and volcanic areas are prone to earthquake triggering1,2. The Coso geothermal field in California lies just north of the surface ruptures driven by the 2019 Ridgecrest earthquake (moment magnitude Mw = 7.1), in an area where changes in coseismic stress should have triggered aftershocks3,4. However, no aftershocks were observed there4. Here we show that 30 years of geothermal heat production at Coso depleted shear stresses within the geothermal reservoir. Thermal contraction of the reservoir initially induced substantial seismicity, as observed in the Coso geothermal reservoir, but subsequently depleted the stress available to drive the aftershocks during the Ridgecrest sequence. This destressing changed the faulting style of the reservoir and impeded aftershock triggering. Although unlikely to have been the case for the Ridgecrest earthquake, such a destressed zone could, in principle, impede the propagation of a large earthquake.

5.
Nat Commun ; 11(1): 22, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31911581

RESUMO

On July 4 2019, a Mw 6.5 earthquake, followed 34 h later by a Mw 7.1 event, struck Searles Valley, California. These events are part of a long-lived cluster of historical earthquakes along the Eastern California Shear Zone (ECSZ) which started in 1872 and are associated with temporarily elevated strain rates. We find that the Mw 6.5 event initiated on a right-lateral NW striking fault and then ruptured a left-lateral fault to the surface. This event triggered right-lateral slip during the Mw 7.1 earthquake. It started as a bilateral, crack-like rupture on a segment brought closer to failure by the Mw 6.5 event. The rupture evolved to pulse-like as it propagated at a relatively slow velocity (2 km/s) along a segment that was unloaded by the Mw 6.5 event. It stopped abruptly at the Coso volcanic area and at the Garlock Fault and brought some neighbouring faults closer to failure.

6.
Nature ; 574(7779): 522-526, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645722

RESUMO

Faults can slip not only episodically during earthquakes but also during transient aseismic slip events1-5, often called slow-slip events. Previous studies based on observations compiled from various tectonic settings6-8 have suggested that the moment of slow-slip events is proportional to their duration, instead of following the duration-cubed scaling found for earthquakes9. This finding has spurred efforts to unravel the cause of the difference in scaling6,10-14. Thanks to a new catalogue of slow-slip events on the Cascadia megathrust based on the inversion of surface deformation measurements between 2007 and 201715, we find that a cubic moment-duration scaling law is more likely. Like regular earthquakes, slow-slip events also have a moment that is proportional to A3/2, where A is the rupture area, and obey the Gutenberg-Richter relationship between frequency and magnitude. Finally, these slow-slip events show pulse-like ruptures similar to seismic ruptures. The scaling properties of slow-slip events are thus strikingly similar to those of regular earthquakes, suggesting that they are governed by similar dynamic properties.

7.
Sci Adv ; 5(3): eaau4065, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30891493

RESUMO

Faults can slip seismically or aseismically depending on their hydromechanical properties, which can be measured in the laboratory. Here, we demonstrate that fault slip induced by fluid injection in a natural fault at the decametric scale is quantitatively consistent with fault slip and frictional properties measured in the laboratory. The increase in fluid pressure first induces accelerating aseismic creep and fault opening. As the fluid pressure increases further, friction becomes mainly rate strengthening, favoring aseismic slip. Our study reveals how coupling between fault slip and fluid flow promotes stable fault creep during fluid injection. Seismicity is most probably triggered indirectly by the fluid injection due to loading of nonpressurized fault patches by aseismic creep.

8.
Nat Commun ; 10(1): 48, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604751

RESUMO

There is increasing evidence that the Himalayan seismicity can be bimodal: blind earthquakes (up to Mw ~ 7.8) tend to cluster in the downdip part of the seismogenic zone, whereas infrequent great earthquakes (Mw 8+) propagate up to the Himalayan frontal thrust. To explore the causes of this bimodal seismicity, we developed a two-dimensional, seismic cycle model of the Nepal Himalaya. Our visco-elasto-plastic simulations reproduce important features of the earthquake cycle, including interseismic strain and a bimodal seismicity pattern. Bimodal seismicity emerges as a result of relatively higher friction and a non-planar geometry of the Main Himalayan Thrust fault. This introduces a region of large strength excess that can only be activated once enough stress is transferred upwards by blind earthquakes. This supports the view that most segments of the Himalaya might produce complete ruptures significantly larger than the 2015 Mw 7.8 Gorkha earthquake, which should be accounted for in future seismic hazard assessments.

9.
Sci Adv ; 2(10): e1600204, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27713925

RESUMO

Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time.

10.
Science ; 350(6257): 193-5, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450208

RESUMO

Assessing the impact of glaciation on Earth's surface requires understanding glacial erosion processes. Developing erosion theories is challenging because of the complex nature of the erosion processes and the difficulty of examining the ice/bedrock interface of contemporary glaciers. We demonstrate that the glacial erosion rate is proportional to the ice-sliding velocity squared, by quantifying spatial variations in ice-sliding velocity and the erosion rate of a fast-flowing Alpine glacier. The nonlinear behavior implies a high erosion sensitivity to small variations in topographic slope and precipitation. A nonlinear rate law suggests that abrasion may dominate over other erosion processes in fast-flowing glaciers. It may also explain the wide range of observed glacial erosion rates and, in part, the impact of glaciation on mountainous landscapes during the past few million years.

11.
Science ; 349(6250): 799, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26293947

RESUMO

In their Comment, Zeitler et al. do not challenge our results or interpretation. Our study does not disprove coupling between tectonic uplift and erosion but suggests that this coupling cannot be the sole explanation of rapid uplift in the Himalayan syntaxes.

12.
Science ; 348(6240): 1224-6, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26068845

RESUMO

Anthropogenic fluid injections are known to induce earthquakes. The mechanisms involved are poorly understood, and our ability to assess the seismic hazard associated with geothermal energy or unconventional hydrocarbon production remains limited. We directly measure fault slip and seismicity induced by fluid injection into a natural fault. We observe highly dilatant and slow [~4 micrometers per second (µm/s)] aseismic slip associated with a 20-fold increase of permeability, which transitions to faster slip (~10 µm/s) associated with reduced dilatancy and micro-earthquakes. Most aseismic slip occurs within the fluid-pressurized zone and obeys a rate-strengthening friction law µ = 0.67 + 0.045ln(v/v0) with v0 = 0.1 µm/s. Fluid injection primarily triggers aseismic slip in this experiment, with micro-earthquakes being an indirect effect mediated by aseismic creep.

13.
Science ; 346(6212): 978-81, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25414309

RESUMO

The Himalayan mountains are dissected by some of the deepest and most impressive gorges on Earth. Constraining the interplay between river incision and rock uplift is important for understanding tectonic deformation in this region. We report here the discovery of a deeply incised canyon of the Yarlung Tsangpo River, at the eastern end of the Himalaya, which is now buried under more than 500 meters of sediments. By reconstructing the former valley bottom and dating sediments at the base of the valley fill, we show that steepening of the Tsangpo Gorge started at about 2 million to 2.5 million years ago as a consequence of an increase in rock uplift rates. The high erosion rates within the gorge are therefore a direct consequence of rapid rock uplift.

14.
Science ; 336(6082): 707-10, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22582259

RESUMO

Advances in observational, laboratory, and modeling techniques open the way to the development of physical models of the seismic cycle with potentially predictive power. To explore that possibility, we developed an integrative and fully dynamic model of the Parkfield segment of the San Andreas Fault. The model succeeds in reproducing a realistic earthquake sequence of irregular moment magnitude (M(w)) 6.0 main shocks--including events similar to the ones in 1966 and 2004--and provides an excellent match for the detailed interseismic, coseismic, and postseismic observations collected along this fault during the most recent earthquake cycle. Such calibrated physical models provide new ways to assess seismic hazards and forecast seismicity response to perturbations of natural or anthropogenic origins.

15.
Nature ; 475(7356): 300-1, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21677646
16.
Nature ; 472(7341): 79-81, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21475198

RESUMO

How surface deformation within mountain ranges relates to tectonic processes at depth is not well understood. The upper crust of the Tibetan Plateau is generally thought to be poorly coupled to the underthrusting Indian crust because of an intervening low-viscosity channel. Here, however, we show that the contrast in tectonic regime between primarily strike-slip faulting in northern Tibet and dominantly normal faulting in southern Tibet requires mechanical coupling between the upper crust of southern Tibet and the underthrusting Indian crust. Such coupling is inconsistent with the presence of active 'channel flow' beneath southern Tibet, and suggests that the Indian crust retains its strength as it underthrusts the plateau. These results shed new light on the debates regarding the mechanical properties of the continental lithosphere, and the deformation of Tibet.

17.
Nature ; 465(7294): 78-81, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20445628

RESUMO

Slip on a subduction megathrust can be seismic or aseismic, with the two modes of slip complementing each other in time and space to accommodate the long-term plate motions. Although slip is almost purely aseismic at depths greater than about 40 km, heterogeneous surface strain suggests that both modes of slip occur at shallower depths, with aseismic slip resulting from steady or transient creep in the interseismic and postseismic periods. Thus, active faults seem to comprise areas that slip mostly during earthquakes, and areas that mostly slip aseismically. The size, location and frequency of earthquakes that a megathrust can generate thus depend on where and when aseismic creep is taking place, and what fraction of the long-term slip rate it accounts for. Here we address this issue by focusing on the central Peru megathrust. We show that the Pisco earthquake, with moment magnitude M(w) = 8.0, ruptured two asperities within a patch that had remained locked in the interseismic period, and triggered aseismic frictional afterslip on two adjacent patches. The most prominent patch of afterslip coincides with the subducting Nazca ridge, an area also characterized by low interseismic coupling, which seems to have repeatedly acted as a barrier to seismic rupture propagation in the past. The seismogenic portion of the megathrust thus appears to be composed of interfingering rate-weakening and rate-strengthening patches. The rate-strengthening patches contribute to a high proportion of aseismic slip, and determine the extent and frequency of large interplate earthquakes. Aseismic slip accounts for as much as 50-70% of the slip budget on the seismogenic portion of the megathrust in central Peru, and the return period of earthquakes with M(w) = 8.0 in the Pisco area is estimated to be 250 years.

18.
Nature ; 456(7222): 631-5, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19052626

RESUMO

The great Sumatra-Andaman earthquake and tsunami of 2004 was a dramatic reminder of the importance of understanding the seismic and tsunami hazards of subduction zones. In March 2005, the Sunda megathrust ruptured again, producing an event of moment magnitude (M(w)) 8.6 south of the 2004 rupture area, which was the site of a similar event in 1861 (ref. 6). Concern was then focused on the Mentawai area, where large earthquakes had occurred in 1797 (M(w) = 8.8) and 1833 (M(w) = 9.0). Two earthquakes, one of M(w) = 8.4 and, twelve hours later, one of M(w) = 7.9, indeed occurred there on 12 September 2007. Here we show that these earthquakes ruptured only a fraction of the area ruptured in 1833 and consist of distinct asperities within a patch of the megathrust that had remained locked in the interseismic period. This indicates that the same portion of a megathrust can rupture in different patterns depending on whether asperities break as isolated seismic events or cooperate to produce a larger rupture. This variability probably arises from the influence of non-permanent barriers, zones with locally lower pre-stress due to the past earthquakes. The stress state of the portion of the Sunda megathrust that had ruptured in 1833 and 1797 was probably not adequate for the development of a single large rupture in 2007. The moment released in 2007 amounts to only a fraction both of that released in 1833 and of the deficit of moment that had accumulated as a result of interseismic strain since 1833. The potential for a large megathrust event in the Mentawai area thus remains large.

19.
Science ; 312(5782): 1921-6, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16809533

RESUMO

Continuously recording Global Positioning System stations near the 28 March 2005 rupture of the Sunda megathrust [moment magnitude (Mw) 8.7] show that the earthquake triggered aseismic frictional afterslip on the subduction megathrust, with a major fraction of this slip in the up-dip direction from the main rupture. Eleven months after the main shock, afterslip continues at rates several times the average interseismic rate, resulting in deformation equivalent to at least a M(w) 8.2 earthquake. In general, along-strike variations in frictional behavior appear to persist over multiple earthquake cycles. Aftershocks cluster along the boundary between the region of coseismic slip and the up-dip creeping zone. We observe that the cumulative number of aftershocks increases linearly with postseismic displacements; this finding suggests that the temporal evolution of aftershocks is governed by afterslip.

20.
Science ; 311(5769): 1897-901, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16574861

RESUMO

Seismic rupture produced spectacular tectonic deformation above a 400-kilometer strip of the Sunda megathrust, offshore northern Sumatra, in March 2005. Measurements from coral microatolls and Global Positioning System stations reveal trench-parallel belts of uplift up to 3 meters high on the outer-arc islands above the rupture and a 1-meter-deep subsidence trough farther from the trench. Surface deformation reflects more than 11 meters of fault slip under the islands and a pronounced lessening of slip trenchward. A saddle in megathrust slip separates the northwestern edge of the 2005 rupture from the great 2004 Sumatra-Andaman rupture. The southeastern edge abuts a predominantly aseismic section of the megathrust near the equator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...